В примере будет зашифрованы и расшифрованы данные алгоритмом кузнечик. Данный процесс будет рассмотрен с различными режимами шифрования. Шифрования для алгоритмов «Магма» и AES128 полностью аналогичны, за исключением разрядности обрабатываемых данных.
Работа с конфигуратором (В разработке)
Для начала настроем в конфигураторе тактирование mik32, например, от внешнего кварца 32МГц. Затем настроем делители шины. Так как крипто-блок тактируется от шины AHB_CLK, то зададим делитель AHB_DIV. В данном примере оставим делитель по умолчанию. В итоге вкладка с тактированием должна выглядеть так:
(Картинка тактирования из конфигуратора. В работе)
Затем перейдем к настройке самого крипто-блока. Для этого откроем вкладку крипто-блок и нажмем включить. После этого появятся несколько настроек.
Настройки крипто-блока в конфигураторе
Зададим им следующие значения:
- Алгоритм шифрования - Кузнечик;
- Режим шифрования - ECB;
- В перестановке слова - нет перестановки;
- Порядок загрузки/выгрузки - От старшего слова к младшему.
В итоге настройки крипто-блока в конфигураторе должны выглядеть как на рисунке.
Нажимаем кнопку сохранения и генерации. В итоге у нас появится проект для PlatformIo. Далее работа идет в visual studio code.
Использование библиотеки HAL_Crypto
В сгенерированном проекте в файле main.c должна быть функция Crypto_Init, в которой будут заданы настройки для крипто-блока. Выглядит она так:
static void Crypto_Init(void)
{
hcrypto.Instance = CRYPTO;
hcrypto.Algorithm = CRYPTO_ALG_KUZNECHIK;
hcrypto.CipherMode = CRYPTO_CIPHER_MODE_ECB;
hcrypto.SwapMode = CRYPTO_SWAP_MODE_NONE;
hcrypto.OrderMode = CRYPTO_ORDER_MODE_MSW;
HAL_Crypto_Init(&hcrypto);
}
Кроме этого в функции SystemClock_Config приведены настройки для тактирования. Убедитесь, что в PeriphClkInit.PMClockAHB присутствует PM_CLOCK_CRYPTO_M. Сама функция должна выглядеть примерно так:
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInit = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
RCC_OscInit.OscillatorEnable = RCC_OSCILLATORTYPE_OSC32K | RCC_OSCILLATORTYPE_OSC32M;
RCC_OscInit.OscillatorSystem = RCC_OSCILLATORTYPE_OSC32M;
RCC_OscInit.AHBDivider = 0;
RCC_OscInit.APBMDivider = 0;
RCC_OscInit.APBPDivider = 0;
RCC_OscInit.HSI32MCalibrationValue = 0;
RCC_OscInit.LSI32KCalibrationValue = 0;
HAL_RCC_OscConfig(&RCC_OscInit);
PeriphClkInit.PMClockAHB = PMCLOCKAHB_DEFAULT | PM_CLOCK_CRYPTO_M;
PeriphClkInit.PMClockAPB_M = PMCLOCKAPB_M_DEFAULT | PM_CLOCK_WU_M | PM_CLOCK_PAD_CONFIG_M;
PeriphClkInit.PMClockAPB_P = PMCLOCKAPB_P_DEFAULT | PM_CLOCK_UART_0_M;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_NO_CLK;
PeriphClkInit.RTCClockCPUSelection = RCC_RTCCLKCPUSOURCE_NO_CLK;
HAL_RCC_ClockConfig(&PeriphClkInit);
}
Для демонстрации вывода текста в PeriphClkInit.PMClockAPB_P присутствует PM_CLOCK_UART_0_M. У вас его может не быть, так как UART нужно включить отдельно. Для этого нужно подключить библиотеки uart_lib и xprintf.
#include "mik32_hal_rcc.h"
#include "mik32_hal_spi.h"
#include "uart_lib.h"
#include "xprintf.h"
Для инициализации UART в функции main, после функции тактирования SystemClock_Config, следует написать:
UART_Init(UART_0, 3333, UART_CONTROL1_TE_M | UART_CONTROL1_M_8BIT_M, 0, 0);
Скорость UART задается делителем во втором аргументе функции. При такой записи скорость будет 9600 бод.
В начале main.c можно видеть объявление структуры с набором настроек для крипто-блока, которую использует функция инициализации Crypto_Init.
Crypto_HandleTypeDef hcrypto;
void SystemClock_Config(void);
static void Crypto_Init(void);
Создадим глобальный массив для ключа. Количество элементов массива можно задать с помощью макросов CRYPTO_KEY_KUZNECHIK (количество слов в ключе для алгоритма кузнечик).
uint32_t crypto_key[CRYPTO_KEY_KUZNECHIK] = {0x8899aabb, 0xccddeeff, 0x00112233, 0x44556677, 0xfedcba98, 0x76543210, 0x01234567, 0x89abcdef};
Для режимов шифрования ECB и CBC длина данных должна быть кратна длине блока. Иначе данные следует дополнить.
Для режима CTR длинна данных может быть любой. В этом режиме дополнения не требуются.
Синхропосылка (вектор инициализации), в соответствии с ГОСТ 34.13—2015, для разных режимов может иметь разную длину:
- В режиме ECB синхропосылка не используется;
- В режиме CBC синхропосылка должна быть длинной m*z, где m - длина блока (128 бит для алгоритма Кузнечик), z - целое число. Поддерживается только случай z=1, m=n, где n - длина блока (4 слова для Кузнечика и AES, 2 слова для Магмы);
- В режиме CTR в регистр INIT следует записывать значение счетчика состоящего из синхропосылки, длинна которой равна половине длине блока, и такого же количества нулей. В итоге размер синхропосылки будет равен размеру блока.
Режим простой замены (Electronic Codebook, ЕСВ)
Теперь напишем функции для зашифровки и расшифровки данных в режиме шифрования ECB - kuznechik_ECB_code и kuznechik_ECB_decode соответственно.
В функции kuznechik_ECB_code будет три массива данных:
- plain_text - незашифрованные данные;
- cipher_text - полученные зашифрованные данные;
- expect_cipher_text - зашифрованные данные, которые ожидается получить.
Количество слов в данных для зашифровки должно быть кратно размеру блока (для кузнечика 4 слова или 128 бит). Если данных меньше, то их нужно дополнить вручную. ГОСТ 34.13—2015 определяет три возможные процедуры дополнения. Можно, например, дополнить остаток нулями до размера блока.
Внутри kuznechik_ECB_code сначала задается режим шифрования функцией HAL_Crypto_SetCipherMode (если другие режимы использовать не планируется, то этого можно не делать, так как этот режим шифрования уже задан после инициализации функцией Crypto_Init), затем устанавливается мастер-ключ функцией HAL_Crypto_SetKey. Так как ключ должен быть инициализирован в режиме шифрования, то после функции HAL_Crypto_SetKey блок находится в режиме зашифровки данных. После этого используется функция HAL_Crypto_Encode для зашифровки данных.
В конце поочередно выведем каждый из массивов в UART. После этого проведем сравнение полученных данных и ожидаемых.
Функция kuznechik_ECB_code
void kuznechik_ECB_code()
{
uint32_t plain_text[] = {
0x11223344, 0x55667700, 0xffeeddcc, 0xbbaa9988,
0x00112233, 0x44556677, 0x8899aabb, 0xcceeff0a,
0x11223344, 0x55667788, 0x99aabbcc, 0xeeff0a00,
0x22334455, 0x66778899, 0xaabbccee, 0xff0a0011
};
uint32_t cipher_text[] = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0
};
uint32_t expect_cipher_text[] = {
0x7f679d90, 0xbebc2430, 0x5a468d42, 0xb9d4edcd,
0xb429912c, 0x6e0032f9, 0x285452d7, 0x6718d08b,
0xf0ca3354, 0x9d247cee, 0xf3f5a531, 0x3bd4b157,
0xd0b09ccd, 0xe830b9eb, 0x3a02c4c5, 0xaa8ada98
};
uint32_t key_length = sizeof(crypto_key)/sizeof(*crypto_key);
uint32_t plain_text_length = sizeof(plain_text)/sizeof(*plain_text);
/* Задать режим шифрования */
HAL_Crypto_SetCipherMode(&hcrypto, CRYPTO_CIPHER_MODE_ECB);
/* Установка ключа */
HAL_Crypto_SetKey(&hcrypto, crypto_key);
/* Зашифровать данные */
HAL_Crypto_Encode(&hcrypto, plain_text, cipher_text, plain_text_length);
xprintf("KEY ");
for (uint32_t i = 0; i < key_length; i++)
{
xprintf("0x%08x, ", crypto_key[i]);
}
xprintf("\n");
xprintf("plain: ");
for (uint32_t i = 0; i < plain_text_length; i++)
{
xprintf("0x%08x, ", plain_text[i]);
}
xprintf("\n");
xprintf("cipher: ");
for (uint32_t i = 0; i < plain_text_length; i++)
{
xprintf("0x%08x, ", cipher_text[i]);
}
xprintf("\n");
xprintf("expect: ");
for (uint32_t i = 0; i < plain_text_length; i++)
{
xprintf("0x%08x, ", expect_cipher_text[i]);
}
xprintf("\n");
for (uint32_t i = 0; i < plain_text_length; i++)
{
if(expect_cipher_text[i] != cipher_text[i])
{
xprintf("error\n");
break;
}
else if ((i+1) == plain_text_length)
{
xprintf("Successfull\n");
}
}
xprintf("\n");
}
Функция kuznechik_ECB_decode аналогична, но в ней используются другие массивы:
- plain_text - полученные расшифрованные данные;
- cipher_text - зашифрованные данные;
- expect_plain_text - расшифрованные данные, которые ожидается получить.
Для расшифровки данных используется функция HAL_Crypto_Decode.
Функция kuznechik_ECB_decode
void kuznechik_ECB_decode()
{
uint32_t plain_text[] = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0
};
uint32_t cipher_text[] = {
0x7f679d90, 0xbebc2430, 0x5a468d42, 0xb9d4edcd,
0xb429912c, 0x6e0032f9, 0x285452d7, 0x6718d08b,
0xf0ca3354, 0x9d247cee, 0xf3f5a531, 0x3bd4b157,
0xd0b09ccd, 0xe830b9eb, 0x3a02c4c5, 0xaa8ada98
};
uint32_t expect_plain_text[] = {
0x11223344, 0x55667700, 0xffeeddcc, 0xbbaa9988,
0x00112233, 0x44556677, 0x8899aabb, 0xcceeff0a,
0x11223344, 0x55667788, 0x99aabbcc, 0xeeff0a00,
0x22334455, 0x66778899, 0xaabbccee, 0xff0a0011
};
uint32_t key_length = sizeof(crypto_key)/sizeof(*crypto_key);
uint32_t cipher_text_length = sizeof(cipher_text)/sizeof(*cipher_text);
/* Задать режим шифрования */
HAL_Crypto_SetCipherMode(&hcrypto, CRYPTO_CIPHER_MODE_ECB);
/* Установка ключа */
HAL_Crypto_SetKey(&hcrypto, crypto_key);
/* Расшифровать данные */
HAL_Crypto_Decode(&hcrypto, cipher_text, plain_text, cipher_text_length);
xprintf("KEY ");
for (uint32_t i = 0; i < key_length; i++)
{
xprintf("0x%08x, ", crypto_key[i]);
}
xprintf("\n");
xprintf("cipher: ");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
xprintf("0x%08x, ", cipher_text[i]);
}
xprintf("\n");
xprintf("plain: ");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
xprintf("0x%08x, ", plain_text[i]);
}
xprintf("\n");
xprintf("expect: ");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
xprintf("0x%08x, ", expect_plain_text[i]);
}
xprintf("\n");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
if(expect_plain_text[i] != plain_text[i])
{
xprintf("error\n");
break;
}
else if ((i+1) == cipher_text_length)
{
xprintf("Successfull\n");
}
}
xprintf("\n");
}
Функция main.
int main()
{
SystemClock_Config();
UART_Init(UART_0, 3333, UART_CONTROL1_TE_M | UART_CONTROL1_M_8BIT_M, 0, 0);
Crypto_Init();
xprintf("\nkuznechik_ECB_code\n");
kuznechik_ECB_code();
xprintf("\nkuznechik_ECB_decode\n");
kuznechik_ECB_decode();
while (1)
{
}
}
Вывод в UART изображен на рисунке.
Функции для режимов CBC и CTR аналогичны, но содержат другие данные в массивах.
Отличие этих режимов в том, что они перед каждой новой расшифровкой или зашифровкой требуют записи вектора инициализации с помощью функции HAL_Crypto_SetINIT.
Режим гаммирования (Counter, CTR)
Размер массива для вектора инициализации можно задать с помощью макросов:
- IV_LENGTH_KUZNECHIK_CBC
- IV_LENGTH_MAGMA_CBC
- IV_LENGTH_AES_CBC
- IV_LENGTH_KUZNECHIK_CTR
- IV_LENGTH_MAGMA_CTR
- IV_LENGTH_AES_CTR
Количество слов в данных для зашифровки должно быть кратно размеру блока (для кузнечика 4 слова или 128 бит). Если данных меньше, то их нужно дополнить вручную.
Функция kuznechik_CBC_code
void kuznechik_CBC_code()
{
uint32_t init_vector[IV_LENGTH_KUZNECHIK_CBC] = {0x12341234, 0x11114444, 0xABCDABCD, 0xAAAABBBB};
uint32_t plain_text[] = {
0x11223344, 0x55667700, 0xffeeddcc, 0xbbaa9988,
0x00112233, 0x44556677, 0x8899aabb, 0xcceeff0a,
0x11223344, 0x55667788, 0x99aabbcc, 0xeeff0a00,
0x22334455, 0x66778899, 0xaabbccee, 0xff0a0011
};
uint32_t cipher_text[] = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0
};
uint32_t expect_cipher_text[] = {
0x50796e7f, 0x4094ce10, 0xbab7374c, 0x981047e3,
0x1ee4f83b, 0x334948ed, 0x86a0873c, 0x86bff9a2,
0xa084f5fa, 0x965481e4, 0xb64be9bd, 0x32ef21e3,
0xa6e376cf, 0x95e8a097, 0x9a46ba33, 0x152b1843
};
uint32_t key_length = sizeof(crypto_key)/sizeof(*crypto_key);
uint32_t plain_text_length = sizeof(plain_text)/sizeof(*plain_text);
/* Задать режим шифрования */
HAL_Crypto_SetCipherMode(&hcrypto, CRYPTO_CIPHER_MODE_CBC);
/* Установка вектора инициализации */
HAL_Crypto_SetIV(&hcrypto, init_vector, sizeof(init_vector)/sizeof(*init_vector));
/* Установка ключа */
HAL_Crypto_SetKey(&hcrypto, crypto_key);
/* Зашифровать данные */
HAL_Crypto_Encode(&hcrypto, plain_text, cipher_text, plain_text_length);
xprintf("KEY ");
for (uint32_t i = 0; i < key_length; i++)
{
xprintf("0x%08x, ", crypto_key[i]);
}
xprintf("\n");
xprintf("plain: ");
for (uint32_t i = 0; i < plain_text_length; i++)
{
xprintf("0x%08x, ", plain_text[i]);
}
xprintf("\n");
xprintf("cipher: ");
for (uint32_t i = 0; i < plain_text_length; i++)
{
xprintf("0x%08x, ", cipher_text[i]);
}
xprintf("\n");
xprintf("expect: ");
for (uint32_t i = 0; i < plain_text_length; i++)
{
xprintf("0x%08x, ", expect_cipher_text[i]);
}
xprintf("\n");
for (uint32_t i = 0; i < plain_text_length; i++)
{
if(expect_cipher_text[i] != cipher_text[i])
{
xprintf("error\n");
break;
}
else if ((i+1) == plain_text_length)
{
xprintf("Successfull\n");
}
}
xprintf("\n");
}
Функция kuznechik_CBC_decode для расшифровки.
void kuznechik_CBC_decode()
{
uint32_t init_vector[IV_LENGTH_KUZNECHIK_CBC] = {0x12341234, 0x11114444, 0xABCDABCD, 0xAAAABBBB};
uint32_t plain_text[] = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0
};
uint32_t cipher_text[] = {
0x50796e7f, 0x4094ce10, 0xbab7374c, 0x981047e3,
0x1ee4f83b, 0x334948ed, 0x86a0873c, 0x86bff9a2,
0xa084f5fa, 0x965481e4, 0xb64be9bd, 0x32ef21e3,
0xa6e376cf, 0x95e8a097, 0x9a46ba33, 0x152b1843
};
uint32_t expect_plain_text[] = {
0x11223344, 0x55667700, 0xffeeddcc, 0xbbaa9988,
0x00112233, 0x44556677, 0x8899aabb, 0xcceeff0a,
0x11223344, 0x55667788, 0x99aabbcc, 0xeeff0a00,
0x22334455, 0x66778899, 0xaabbccee, 0xff0a0011
};
uint32_t key_length = sizeof(crypto_key)/sizeof(*crypto_key);
uint32_t cipher_text_length = sizeof(cipher_text)/sizeof(*cipher_text);
/* Задать режим шифрования */
HAL_Crypto_SetCipherMode(&hcrypto, CRYPTO_CIPHER_MODE_CBC);
/* Установка вектора инициализации */
HAL_Crypto_SetIV(&hcrypto, init_vector, sizeof(init_vector)/sizeof(*init_vector));
/* Установка ключа */
HAL_Crypto_SetKey(&hcrypto, crypto_key);
/* Расшифровать данные */
HAL_Crypto_Decode(&hcrypto, cipher_text, plain_text, cipher_text_length);
xprintf("KEY ");
for (uint32_t i = 0; i < key_length; i++)
{
xprintf("0x%08x, ", crypto_key[i]);
}
xprintf("\n");
xprintf("cipher: ");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
xprintf("0x%08x, ", cipher_text[i]);
}
xprintf("\n");
xprintf("plain: ");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
xprintf("0x%08x, ", plain_text[i]);
}
xprintf("\n");
xprintf("expect: ");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
xprintf("0x%08x, ", expect_plain_text[i]);
}
xprintf("\n");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
if(expect_plain_text[i] != plain_text[i])
{
xprintf("error\n");
break;
}
else if ((i+1) == cipher_text_length)
{
xprintf("Successfull\n");
}
}
xprintf("\n");
}
функция main.
int main()
{
SystemClock_Config();
UART_Init(UART_0, 3333, UART_CONTROL1_TE_M | UART_CONTROL1_M_8BIT_M, 0, 0);
Crypto_Init();
xprintf("\nkuznechik_CBC_code\n");
kuznechik_CBC_code();
xprintf("\nkuznechik_CBC_decode\n");
kuznechik_CBC_decode();
while (1)
{
}
}
Если у вас включен UART или подключен common.h, или объявлен #define MIK32_CRYPTO_DEBUG, то можно посмотреть вывод xprintf. Вывод в UART изображен на рисунке.
Режим простой замены с зацеплением (Cipher Block Chaining, СВС)
Количество слов в данных может быть любым. Если данных меньше, то их нужно дополнить вручную.
Функция kuznechik_CTR_code.
void kuznechik_CTR_code()
{
uint32_t init_vector[IV_LENGTH_KUZNECHIK_CTR] = {0x12341235, 0x5BCDABCD};
uint32_t plain_text[] = {
0x11223344, 0x55667700, 0xffeeddcc, 0xbbaa9988,
0x00112233, 0x44556677, 0x8899aabb, 0xcceeff0a,
0x11223344, 0x55667788, 0x99aabbcc, 0xeeff0a00,
0x22334455, 0x66778899
};
uint32_t cipher_text[] = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0
};
uint32_t expect_cipher_text[] = {
0xf12504ea, 0x08bf9cd4, 0x2c1daede, 0x98792153,
0x2b92cfc8, 0xca2e1091, 0x2bf5d2b7, 0xe2179b86,
0xab37ec96, 0x918795fe, 0xe6c2e8fa, 0xc2773e7b,
0x74d3290d, 0xcd9aaf15
};
uint32_t key_length = sizeof(crypto_key)/sizeof(*crypto_key);
uint32_t plain_text_length = sizeof(plain_text)/sizeof(*plain_text);
/* Задать режим шифрования */
HAL_Crypto_SetCipherMode(&hcrypto, CRYPTO_CIPHER_MODE_CTR);
/* Установка вектора инициализации */
HAL_Crypto_SetIV(&hcrypto, init_vector, sizeof(init_vector)/sizeof(*init_vector));
/* Установка ключа */
HAL_Crypto_SetKey(&hcrypto, crypto_key);
/* Зашифровать данные */
HAL_Crypto_Encode(&hcrypto, plain_text, cipher_text, plain_text_length);
xprintf("KEY ");
for (uint32_t i = 0; i < key_length; i++)
{
xprintf("0x%08x, ", crypto_key[i]);
}
xprintf("\n");
xprintf("plain: ");
for (uint32_t i = 0; i < plain_text_length; i++)
{
xprintf("0x%08x, ", plain_text[i]);
}
xprintf("\n");
xprintf("cipher: ");
for (uint32_t i = 0; i < plain_text_length; i++)
{
xprintf("0x%08x, ", cipher_text[i]);
}
xprintf("\n");
xprintf("expect: ");
for (uint32_t i = 0; i < plain_text_length; i++)
{
xprintf("0x%08x, ", expect_cipher_text[i]);
}
xprintf("\n");
for (uint32_t i = 0; i < plain_text_length; i++)
{
if(expect_cipher_text[i] != cipher_text[i])
{
xprintf("error\n");
break;
}
else if ((i+1) == plain_text_length)
{
xprintf("Successfull\n");
}
}
xprintf("\n");
}
Функция kuznechik_CTR_decode.
void kuznechik_CTR_decode()
{
uint32_t init_vector[IV_LENGTH_KUZNECHIK_CTR] = {0x12341235, 0x5BCDABCD};
uint32_t plain_text[] = {
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0,
0x0, 0x0
};
uint32_t cipher_text[] = {
0xf12504ea, 0x08bf9cd4, 0x2c1daede, 0x98792153,
0x2b92cfc8, 0xca2e1091, 0x2bf5d2b7, 0xe2179b86,
0xab37ec96, 0x918795fe, 0xe6c2e8fa, 0xc2773e7b,
0x74d3290d, 0xcd9aaf15
};
uint32_t expect_plain_text[] = {
0x11223344, 0x55667700, 0xffeeddcc, 0xbbaa9988,
0x00112233, 0x44556677, 0x8899aabb, 0xcceeff0a,
0x11223344, 0x55667788, 0x99aabbcc, 0xeeff0a00,
0x22334455, 0x66778899
};
uint32_t key_length = sizeof(crypto_key)/sizeof(*crypto_key);
uint32_t cipher_text_length = sizeof(cipher_text)/sizeof(*cipher_text);
/* Задать режим шифрования */
HAL_Crypto_SetCipherMode(&hcrypto, CRYPTO_CIPHER_MODE_CTR);
/* Установка вектора инициализации */
HAL_Crypto_SetIV(&hcrypto, init_vector, sizeof(init_vector)/sizeof(*init_vector));
/* Установка ключа */
HAL_Crypto_SetKey(&hcrypto, crypto_key);
/* Расшифровать данные */
HAL_Crypto_Decode(&hcrypto, cipher_text, plain_text, cipher_text_length);
xprintf("KEY ");
for (uint32_t i = 0; i < key_length; i++)
{
xprintf("0x%08x, ", crypto_key[i]);
}
xprintf("\n");
xprintf("cipher: ");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
xprintf("0x%08x, ", cipher_text[i]);
}
xprintf("\n");
xprintf("plain: ");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
xprintf("0x%08x, ", plain_text[i]);
}
xprintf("\n");
xprintf("expect: ");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
xprintf("0x%08x, ", expect_plain_text[i]);
}
xprintf("\n");
for (uint32_t i = 0; i < cipher_text_length; i++)
{
if(expect_plain_text[i] != plain_text[i])
{
xprintf("error\n");
break;
}
else if ((i+1) == cipher_text_length)
{
xprintf("Successfull\n");
}
}
xprintf("\n");
}
Функция main.
int main()
{
SystemClock_Config();
UART_Init(UART_0, 3333, UART_CONTROL1_TE_M | UART_CONTROL1_M_8BIT_M, 0, 0);
Crypto_Init();
xprintf("\nkuznechik_CTR_code\n");
kuznechik_CTR_code();
xprintf("\nkuznechik_CTR_decode\n");
kuznechik_CTR_decode();
while (1)
{
}
}
Вывод в UART изображен на рисунке.